skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brookshire, E_N Jack"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The vadose zone—the variably saturated, near‐surface environment that is critical for ecosystem services such as food and water provisioning, climate regulation, and infrastructure support—faces increasing pressures from both anthropogenic and natural factors, including changing climatic conditions. A more comprehensive understanding of vadose zone processes and interactions is imperative to effectively address these challenges and safeguard water and soil resources. This review outlines selected key issues, knowledge gaps, and research opportunities across six thematic sections. Each section presents a problem statement, a summary of recent innovations, and a compilation of emerging challenges and study opportunities. The selected topics include scaling and modeling of vadose zone properties and processes, soil moisture monitoring initiatives, surface energy balance, interplay between preferential water flow paths and biogeochemical processes, interactions between fires and vadose zone dynamics, and emerging contaminants and their fate in the vadose zone. This overview is intended to serve as a compendium of vadose zone science that encompasses both insights gained from prior research and anticipated needs for the coming years. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Abstract Rangelands provide significant environmental benefits through many ecosystem services, which may include soil organic carbon (SOC) sequestration. However, quantifying SOC stocks and monitoring carbon (C) fluxes in rangelands are challenging due to the considerable spatial and temporal variability tied to rangeland C dynamics as well as limited data availability. We developed the Rangeland Carbon Tracking and Management (RCTM) system to track long‐term changes in SOC and ecosystem C fluxes by leveraging remote sensing inputs and environmental variable data sets with algorithms representing terrestrial C‐cycle processes. Bayesian calibration was conducted using quality‐controlled C flux data sets obtained from 61 Ameriflux and NEON flux tower sites from Western and Midwestern US rangelands to parameterize the model according to dominant vegetation classes (perennial and/or annual grass, grass‐shrub mixture, and grass‐tree mixture). The resulting RCTM system produced higher model accuracy for estimating annual cumulative gross primary productivity (GPP) (R2 > 0.6, RMSE <390 g C m−2) relative to net ecosystem exchange of CO2(NEE) (R2 > 0.4, RMSE <180 g C m−2). Model performance in estimating rangeland C fluxes varied by season and vegetation type. The RCTM captured the spatial variability of SOC stocks withR2 = 0.6 when validated against SOC measurements across 13 NEON sites. Model simulations indicated slightly enhanced SOC stocks for the flux tower sites during the past decade, which is mainly driven by an increase in precipitation. Future efforts to refine the RCTM system will benefit from long‐term network‐based monitoring of vegetation biomass, C fluxes, and SOC stocks. 
    more » « less
    Free, publicly-accessible full text available March 15, 2026